Total Synthesis of (−**)-**r**-Kainic Acid by (**−**)-Sparteine-Mediated Asymmetric Deprotonation**−**Cycloalkylation†**

LETTERS 2004 Vol. 6, No. 21 ³⁷⁴³-**³⁷⁴⁶**

ORGANIC

M. Montserrat Martinez and Dieter Hoppe*

*Organisch-Chemisches Institut, Westfa¨lische Wilhelms-Uni*V*ersita¨t Mu¨nster, Corrensstrasse 40, D-48149 Mu¨nster, Germany*

dhoppe@uni-muenster.de

Received July 23, 2004

ABSTRACT

We report a new enantioselective synthesis of (-)- α -kainic acid from D-serine methyl ester hydrochloride, based on a (-)-sparteine-mediated asymmetric deprotonation of an intermediate carbamate that, by stereospecific anti S_N'S_F' intramolecular cycloalkylation, leads to the pyrrolidine **ring precursor of (**−**)-**r**-kainic acid, in high yield and diastereoselectivity. The intermediate pyrrolidine was further transformed to (**−**)-**r**-kainic acid in three steps.**

The natural marine product $(-)$ - α -kainic acid (1), a potent neurotransmitting activity inhibitor for the central nervous system, $¹$ is the parent member of kainoids, an important class</sup> of compounds with interesting biological properties.

Synthesis of kainoids needs to address the formation of a pyrrolidine-2-carboxylic acid with defined stereochemistry at the three continuous chiral centers of the ring, where is essential to achieve a *cis* stereochemistry for the 3- and 4-positions. Subsequent to the first synthesis of $(-)$ - α -kainic acid carried out by Oppolzer,² several total syntheses of this compound were published,³ although only a few lead to the enantiopure product. Here, we report a new diastereoselective $(-)$ -sparteine-mediated total synthesis of $(-)$ - α -kainic acid.

Recently, we have reported that sparteine-mediated carbocyclizations of allyllithium compounds lead to cyclopentanes with the favored *cis* stereochemistry at the newly formed bond.4 Later, this method was extended to the synthesis of a *cis*-3,4-divinylpyrrolidine with high enantioand diastereoselectivity.⁵ We now report the use of this

[†] Dedicated to Professor Th. Kauffmann on the occasion of his 80th birthday.

^{(1) (}a) Foster, A. C.; Fagg, G. E. *Brain Res. Re*V. **¹⁹⁸⁴**, *⁷*, 103. (b) Watkins, J. C.; Olverman, H. J. *Trends Neurosci.* **1987**, *10*, 265. (c) Hansen, J. J.; Krogsgaard-Larsen, P. *Med. Res. Re*V. **¹⁹⁹⁰**, *¹⁰*, 55.

⁽²⁾ Oppolzer, W.; Thirring, K. *J. Am. Chem. Soc*. **1982**, *104*, 4978.

^{(3) (}a) Williams, M. R. *Synthesis of Optical Active* α-Amino Acids; Pergamon: Oxford, 1989; p 306. Reviews: (b) Parsons, A. F. *Tetrahedron* **1996**, *52*, 4149. For selected recently syntheses: (c) Nakagawa, H.; Sugahara, T.; Ogasawara, K. *Org. Lett*. **2000**, *2*, 3181. (d) Xia, Q.; Ganem, B. *Org. Lett.* **2001**, *3*, 485. (e) Clayden, J.; Menet, C. J.; Tchabanenko, K. *Tetrahedron* **2002**, *58*, 4727. (f) Miyata, O.; Ozawa, Y.; Ninomiya, I.; Naito, T. *Tetrahedron* **2000**, *56*, 6199. (g) Trost, B. M.; Rudd, M. T. *Org. Lett*. **2003**, *5*, 1467. (h) Chevliakov, M. V.; Montgomery, J. *J. Am. Chem. Soc*. **1999**, *121*, 11139. (i) Campbell, A. D.; Raynham, T. M.; Taylor, R. J. K. *J. Chem. Soc., Perkin Trans. 1* **2000**, *19*, 3194. (j) Hirasawa, H.; Taniguchi, T.; Ogasawara, K. *Tetrahedron Lett*. **2001**, *42*, 7587.

⁽⁴⁾ Deiters, A.; Hoppe, D. *J. Org. Chem*. **2001**, *66*, 2842.

⁽⁵⁾ Deiters, A.; Wibbeling, B.; Hoppe, D. *Ad*V*. Synth. Catal*. **²⁰⁰¹**, *³⁴³*, 181.

methodology to synthesize $(-)$ - α -kainic acid following the strategy described in Scheme 1.

In our synthesis, the desired configuration of $(-)$ - α -kainic acid, is achieved via asymmetric *anti* S_N'S_E' cycloalkylation reaction of key precursor **C**, synthesized from building blocks **A** and **B**. 6

Synthesis of key precursor **C** (**12** in Scheme 2) has been carried out starting from *N*-benzyl-protected D-serine methyl ester hydrochloride,⁷ first transformed into silyl ether **3** ($[\alpha]_D$) ⁺3.9, *^c* 0.94, CHCl3) in 89% yield. Reduction of ester **³** with LiBH₄ led to alcohol **4** ($[\alpha]_D$ -8.2 (*c* 1.10, CHCl₃)) in 47%.8 Further, the synthesis required the elaboration of intermediate **6** from **4** containing two stereogenic double bonds, both achieved with an *E/Z* ratio >99% (determined by ¹ H NMR). *N*-Alkylation of alcohol **4** was carried out by refluxing (E) -configured isoprenoid 21^9 using NaHCO₃ in acetonitrile, yielding alcohol **5** ($[\alpha]_D$ -3.6 (*c* 0.91, CHCl₃)) in 82%. **5** was converted to **6** with 75% overall yield by Swern oxidation followed in situ olefination using (carbethoxymethylene)triphenylphosphorane, in a single operation to avoid racemization. The next step of the synthesis consisted of the selective removal of TES group in **6** with TBAF, which was achieved in 81% yield. Allylic alcohol **7** $(\lceil \alpha \rceil_D + 14.7 \, (c \, 0.61, \text{CHCl}_3))$ was then submitted to chlorinesubstitution, giving (E, E) -allylic chloride **8** ($[\alpha]_D$ +22.0 (*c* 0.78, CHCl₃)) in 71%. An optical purity of \geq 95% enantiomeric excess was determined for **8** by ¹ H NMR analysis of the corresponding $(-)$ -MPTA ester **10**.¹⁰
Desired carbamate **12** was prepared

Desired carbamate **12** was prepared from **8** via 1,2 reduction of its ester moiety by treatment with DIBAL-H (70% yield), followed by standard carbamoylation of **11**, yielding **12** ($[\alpha]_D$ +9.7 (*c* 0.71, CHCl₃)) in 53%.

 a Conditions: (a) TBSCl, NEt₃, DMAP, CH₂Cl₂, rt, 12 h. (b) LiBH₄, THF/toluene, reflux, 20 min. (c) CH₃CN, NaHCO₃, rt, 30 min, 21, reflux, 3 h. (d) $(COCl)_2$, DMSO, CH_2Cl_2 , -78 °C, NEt₃, -15 °C, 1 h. (e) (Carbethoxymethylene)triphenylphosphorane, -15 $^{\circ}$ C to room temperature, 3 h. (f) TBAF, THF, 0 $^{\circ}$ C, 5 min. (g) NEt₃, CH₂Cl₂, -40 °C, MsCl, 1 h, LiCl, THF, rt, 3 h. (h) DIBAL-H, CH2Cl2, -⁷⁸ °C, 2 h. (i) NaH, *Cb*Cl,THF, reflux, 12 h.

Intramolecular *anti* $S_N'S_E'$ cycloalkylation of (E,E) -carbamate 12 (Scheme 3), the key step for the synthesis of $(-)$ - α -kainic acid, commenced with α -deprotonation by means of *n*-BuLi/(-)-sparteine at -78 °C in toluene.¹¹ This reaction took place under kinetic control, providing after 1 h the cyclization products $13a$ ([α]_D -22.6 (*c* 0.57, CHCl₃)) and **13b** ($[\alpha]_D$ -6.4 (*c* 0.75, CHCl₃)) in 83% yield¹² (**13a:13b**, dr 80:20, as determined by ¹H NMR). As expected, a high C3-C4 *cis* selectivity was achieved giving the two separable diastereomers **13a** and **13b**, without formation of *trans* products with respect to the $C3-C4$ bond, as evidenced by ¹H NMR.

Since the relative configuration of pyrrolidines **13a** and **13b** could not be determined by NOE studies, the stereochemical assignment of structures to **13a** and **13b** is based on the fact that the two olefinic protons of the isopropenyl chain appear as two singlets in the ¹ H NMR spectra, as is typical for similar kainoids.¹³ In addition, experimental vicinal coupling constants $(^{3}J_{2,3}$ and $^{3}J_{3,4}$) observed for **13a**

⁽⁶⁾ This synthetic route could be also applicable for the synthesis of $(-)$ domoic acid by modifying precursor A with a dienoic side chain.

⁽⁷⁾ N-Benzylation was carried out first by reductive amination; see: Barco, A.; Benetti, S.; Spalluto, G. *J. Org. Chem.* **1992**, *57*, 6279.

⁽⁸⁾ Low yield was obtained due to simultaneous occurrence of deprotection of silyl ether. Other reducing agents were checked (LiAlH₄, NaBH₄) unsuccessfully.

⁽⁹⁾ Synthesized from hydroxyacetone in 67% overall yield over four steps: silylation followed by Horner-Wadsworth-Emmons reaction, 1,2 reduction of the ester moiety, and bromination.

 (10) (-)-MPTA ester 10 was derived from racemic and enantiomerically enriched 9 by esterification using (-)-MPTACl in 70% overall yield.

⁽¹¹⁾ Deiters, A.; Mück-Lichtenfeld, C.; Fröhlich, R.; Hoppe, D. Org. *Lett.* **2000**, *2*, 2415.

⁽¹²⁾ Other conditions for the asymmetric cyclization, as well as other key precursors, were tried with less success.

^{*a*} Conditions: (a) *n*-BuLi/sp (2.2 equiv), toluene, -78 °C, 1 h. (b) MeOH.

were within the range of calculated ones from computational studies based on the Karplus-Conroy equation.¹⁴

The (*Z*)-geometry of the enol carbamate moiety is based on the small olefinic coupling constant (5.6 Hz) observed, in agreement with previous studies in our group.^{4,5}

Further support to this assignment is provided by the conversion of **13a** to $(-)$ - α -kainic acid (**1**).

The stereochemical outcome of the asymmetric cycloalkylation reaction is supported by the following mechanistic considerations: (1) The chiral base $n-BuLi/(-)$ -sparteine enantioselectively removes the α -*pro*-*S*-proton¹⁵ of carbamate **12**, generating the configurationally labile intermediate **^E**'**sp**. Intramolecular cycloalkylation of **^E** occurs under **Scheme 4.** Completion of the Synthesis to $(-)$ - α -Kainic Acid and Synthesis of Lactone **18b***^a*

^a Conditions: (a) MeLi or TMSOTf. (b) *t*-BuLi, TMEDA, THF, -78 °C, 1 h, MeSSMe, 1 h, rt. (c) MeOC(=O)Cl, ClCH₂CH₂Cl, reflux, 3 h. (d) MeSO₃H, MeOH, H₂O, reflux, 16 h. (e) Jones reagent. (f) 40% NaOH aq, reflux, 18 h. (g) Dowex 50WX-200 (elution with NH₄OH $(1 N)$), Amberlite CG- 50 (elution with H₂O). (h) Recrystallization, EtOH aq.

regioselective C-C bond formation between both *^γ*,*γ*′ positions and simultaneous elimination of lithium chloride.⁵ Although these $(-)$ -sparteine-lithium ion pairs of primary allyl carbamates have been recognized to have limited configurational stability, the cycloalkylation is more rapid than epimerization. (2) An *endo* conformation of the allylic moiety in an anti mode is required for the $S_N'S_E'$ cycloalkylation.¹⁶ The chairlike transition state **E** allows the $\pi-\pi^*$ overlap of the electron-rich and electron-deficient allyl moieties, presumably being the origin of the high *cis* diastereoselectivity. Compound **13b** is most probably formed by intramolecular cycloalkylation of the (*R*)-configured lithium derivative **^F**'**sp**.

To complete the synthesis of $(-)$ - α -kainic acid, oxidative removal of the carbamate group in **13a** is necessary (Scheme 4).

The usual oxidative methods 17 are not applicable to vinyl carbamates **13a** and **13b** due to the reactive additional trisubstituted double bond. Moreover, attempts to convert the vinyl carbamate **13a** into aldehyde **14a** by using methyllithium¹⁸ or TMSOTf¹⁹ failed. In light of these results, we used an indirect oxidation method consisting in a vinylic deprotonation with *t*-BuLi followed by quench with MeSS-Me.20 The obtained ketene monothioacetal **15a** was submitted

^{(13) (}a) Kondo, K.; Kondo, Y.; Takemoto, T.; Kenoue, T. *Bull. Chem. Soc. Jpn.* **1962**, *35*, 1899. (b) For a discussion of the rotameric distributions of several kainoids: (c) Conway, G. A.; Park, J. S.; Maggiora, L.; Mertes, M. P.; Galton, N.; Michaelis, E. K. *J. Med. Chem*. **1984**, *27*, 52. (d) Kozikowski, A. P.; Fauq, A. H. *Tetrahedron Lett*. **1990**, *31*, 2967 and references therein.

⁽¹⁴⁾ *NMR-Spectroscopie*; Günther, H., Ed.; Georg Thieme Verlag Stuttgart: New York, 1992. The coupling constants were obtained with the use of the packet of programs TURBOMOLE (version 5.6) (University Karlsruhe: Karlsruhe, Germany, 2003). The structures were optimized with the theoretical function at the DFT level using the pure B-P functional [DFT- (B-P)] and the basis set TZVP (triple-valence-polarized).

⁽¹⁵⁾ In all known examples, deprotonation of *O*-allylic carbamates with *n*-BuLi/**sp** led to the (*S*)-configured organolithium compound. For reviews: (a) Hoppe, D. *Angw. Chem*. **1984**, *96*, 930; *Angw. Chem., Int. Ed. Engl*. **1984**, *23*, 932. (b) Hoppe, D.; Hense, T. *Angw. Chem., Int. Ed. Engl*. **1997**, *36*, 2282 and references therein.

⁽¹⁶⁾ Hoppe, D.; Bro¨nneke, A. *Tetrahedron Lett*. **1983**, *24*, 1687. For review about S_N reactions, see: Magid, M. R. *Tetrahedron* 1980, 31, 1901. (17) (a) Rehders, F.; Hoppe, D. *Synthesis* **1992**, 859. (b) Grieco, A. P.;

Oguri, T.; Yokoyama, Y. *Org. Lett*. **1978**, *5*, 419.

⁽¹⁸⁾ Madec, D.; Henryon, V.; Fe´re´zou, P. J. *Tetrahedron Lett*. **1999**, *40*, 8103.

without further purification to *N*-debenzylation by treatment with methyl chloroformate,²¹ providing **16a** ($[\alpha]_D$ -19.0 (*c*) $(0.5, CHCl₃)$ in 84% overall yield. Similar results were obtained when the minor diastereomer **13b** was treated under the same conditions to provide **16b**.

Treatment of monothioketene acetal **16a** with an excess of methanesulfonic acid resulted in the deprotection of the hydroxyl group and simultaneous hydrolysis of the ketene monothioacetal moiety, giving alcohol **17a** in 55% overall yield. In a similar fashion, lactone **18b** resulted from deprotection of silyl ether in **16b** followed by cyclization of both C-2 and C-3 chains in 48% yield.

Elucidation of the structure of **17a** and **18b** was carried out by ¹H NMR spectra and NOE studies.²² The absolute configuration was confirmed by comparing their respective $[\alpha]_D$ values with published ones: for **17a** ($[\alpha]_D$ -41.2 (*c*) 0.52, CH₂Cl₂)) versus ($[\alpha]_D^{3i}$ -43.0 (*c* 1.25, CH₂Cl₂)) and for **18b** ($[\alpha]_D$ -28.1 (*c* 0.30, CHCl₃)) versus *ent*-**18b** ($[\alpha]_D$ ^{3j} $+32.1$ (*c* 1.20, CHCl₃)).

The final steps to the natural product were carried out following literature precedents:⁴ⁱ Jones oxidation of the primary alcohol **17a**, followed by hydrolysis with 40% aqueous sodium hydroxide, and purification by using ionexchange chromatography afforded enantiopure $(-)$ - α -kainic acid as colorless needles after recrystallization from aqueous ethanol (38% overall yield). Our final product possessed physical properties identical to those of the authentic material: mp $243-245$ °C (decomp) versus lit.³ⁱ mp $241-$ 244 °C (decomp); $[\alpha]_D$ –14.3 (*c* 0.40, H₂O) versus lit.⁴ⁱ [$\alpha]_D$ -14.6 (*c* 0.25, H₂O).

In conclusion, we have reported a new method to prepare $(-)$ - α -kainic acid via $(-)$ -sparteine-mediated asymmetric lithiation and cycloalkylation synthesis.

Acknowledgment. This work was supported by the Deutsche Forschunsgemeinschaft (Sonderforschungs-bereich 424) and the Fonds der Chemischen Industrie. M. Martínez thanks Spanish "Ministerio de Educación Cultura y Deporte" for a grant. We thank Mrs. E. Izgorodina for theoretical calculation of NMR coupling constants.

Supporting Information Available: Experimental procedures for the preparation of new compounds and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0485666

⁽¹⁹⁾ Seppi, M.; Kalkofen, R.; Reupohl, J.; Fröhlich, R.; Hoppe, D. *Angew. Chem*. **2004**, *116*, 1447.

⁽²⁰⁾ Paulsen, H.; Hoppe, D. *Tetrahedron* **1992**, *48*, 5667.

⁽²¹⁾ Campbell, A. D.; Raynham, T. M.; Taylor, R. J. K. *Chem. Commun*. **1999**, 245.

⁽²²⁾ 1H NMR exhibits two broad singlets at 4.62 and 4.91 ppm for the alkene protons, indicating the C3-C4 cis relationship (see refences 4i and 12). The NOE studies were carried out at low temperature because of the broad signals.